Fermatova teorema (analiza)

Izvor: testwiki
Datum izmjene: 25. marta 2022. u 14:30; autor/autorica: imported>Edgar Allan Poe (Edgar Allan Poe je premjestio stranicu Fermaova teorema (analiza) na Fermatova teorema (analiza))
(razlika) ← Starija verzija | Aktualna verzija (razlika) | Novija verzija → (razlika)
Prijeđi na navigaciju Prijeđi na pretragu
Ovaj članak je o Fermaovoj teoremi o stacionarnim tačkama. Za druge Fermaove teoreme, pogledajte Fermaova teorema.

Fermaova teorema je teorema u realnoj analizi, nazvana po francuskom matematičaru po imenu Pjer de Ferma. Ona daje metod za pronalaženje lokalnih ekstremuma (maksimuma i minimuma) diferencijabilnih funkcija, pokazivanjem da je svaki lokalni ekstremum funkcije stacionarna tačka (izvod funkcije u toj tački je jednak nuli). Tako, korišćenjem Fermaove teoreme, problem nalaženje ekstremuma može da se svede na rešavanje jednačine.

Važno je imati u vidu da Fermaova teorema daje samo neophodan ali ne i dovoljan uslov za lokalni ekstremum funkcije. Znači neke stacionarne tačke nisu lokalni ekstremumi, već su prevojne tačke. Da bi se utvrdilo da li je stacionarna tačka lokalni ekstremum funkcije, i ako jeste, da li se radi o lokalnom maksimumu ili minimumu, neophodno je da se analizira drugi izvod funkcije (ako on postoji)

Teorema

Neka je f:(a,b) funkcija, i pretpostavimo da je x0(a,b) lokalni ekstremum od f. Ako je f diferencijabilna u x0 onda je f(x0)=0.

Povezano

Šablon:Klica-mat