Datoteka:Wave equation 1D fixed endpoints.gif

Izvor: testwiki
Prijeđi na navigaciju Prijeđi na pretragu
Wave_equation_1D_fixed_endpoints.gif (274 × 121 piksela, veličina datoteke/fajla: 129 KB, MIME tip: image/gif, stalno iznova, 99 sličica, 4,9 s)

Ova datoteka je s projekta Wikimedijina ostava i može se upotrebljavati i na drugim projektima. Ispod su prikazane informacije s njene opisne stranice.

Sažetak

Opis
English: Illustration of solution of one-dimensional wave equation: a gaussian wave on a string fixed at both ends. The wave reflects from each end with a 180° phase shift.
Datum
Izvor Vlastito djelo
Autor Oleg Alexandrov
GIF genesis
InfoField
 Ova je GIF grafika napravljena programom MATLAB.

Licenciranje

Public domain Ja, vlasnik autorskog prava ovog djela, objavljujem ovaj rad u javno vlasništvo. Ovo se primjenjuje u cijelom svijetu.
U nekim državama ovo zakonski nije moguće; u tom slučaju:
Ja dopuštam svima pravo korištenja ovog rada u bilo koju svrhu, bez ikakvih uslova, osim ako su takvi uslovi zakonski neophodni.

MATLAB source code

% A wave travelling on a string with
% fixed endpoints

function main()

   % KSmrq's colors
   red    = [0.867 0.06 0.14];
   blue   = [0, 129, 205]/256;
   green  = [0, 200,  70]/256;
   yellow = [254, 194,   0]/256;
   white = 0.99*[1, 1, 1];
   
   % length of the string and the grid
   L = 5;
   N = 151;
   X=linspace(0, L, N);

   h = X(2)-X(1); % space grid size
   c = 0.5; % speed of the wave
   tau = 0.25*h/c; % time grid size
   
   K = 5; % steepness of the bump
   S = 0; % shift the wave
   f=inline('exp(-K*(x-S).^2)', 'x', 'S', 'K'); % a gaussian as an initial wave
   df=inline('-2*K*(x-S).*exp(-K*(x-S).^2)', 'x', 'S', 'K'); % derivative of f

   % wave at time 0 and tau
   U0 = 0*f(X, S, K);
   U1 = U0 - 2*tau*c*df(X, S, K);
   
   U = 0*U0; % current U

   Big=10000;
   Ut = zeros(Big, N);
   Ut(1, :) = U0;
   Ut(2, :) = U1;
   
   % hack to capture the first period of the wave
   min_k = 2*N; k_old = min_k; turn_on = 0;

   for j=3:Big

      last_j = j;
      
      %  fixed end points
      U(1)=0; U(N)=0;
      
      % finite difference discretization in time
      for i=2:(N-1)
         U(i) = (c*tau/h)^2*(U1(i+1)-2*U1(i)+U1(i-1)) + 2*U1(i) - U0(i);
      end

      Ut(j, :) = U;
      
      % update info, for the next iteration
      U0 = U1; U1 = U;

      % hack to capture the first period of the wave
      k = find ( abs(U) == max(abs(U)) );
      k = k(1);

      if k > N/2
         turn_on = 1;
      end

      min_k = min(min_k, k_old);
      if k > min_k & min_k == k_old & turn_on == 1
         break;
      end
      k_old = k; 
      
   end

   % truncate to the first period
   last_j = last_j - 1;
   Ut = Ut(1:last_j, :);

  % shift the wave by a certain amount
   shift = floor(last_j/4);
   Vt=Ut;
   Ut((last_j-shift+1):last_j, :) = Vt(1:shift, :);
   Ut(1:(last_j-shift), :)        = Vt((shift+1):last_j, :);

   num_frames = 100;
   spacing=floor(last_j/num_frames)
   
   % plot the wave
   for j=1:(last_j-spacing+1)

      U = Ut(j, :);

      if rem(j, spacing) == 1

         figure(1); clf; hold on;
         axis equal; axis off; 
         lw = 3; % linewidth
         plot(X, U, 'color', red, 'linewidth', lw);
	 
         % plot the ends of the string
         small_rad = 0.06;
         ball(0, 0, small_rad, red);
         ball(L, 0, small_rad, red);
	 
         % size of the window
         ys = 1.1;
         axis([-small_rad, L+small_rad, -ys, ys]);
      
         % small markers to keep the bounding box fixed when saving to eps
         plot(-small_rad, ys, '*', 'color', white);
         plot(L+small_rad, -ys, '*', 'color', white);

         frame_no = floor(j/spacing)+1;
         frame=sprintf('Frame%d.eps', 1000+frame_no);
         disp(frame)
         saveas(gcf, frame, 'psc2');
         
      end
   end
   
function ball(x, y, radius, color) % draw a ball of given uniform color 
   Theta=0:0.1:2*pi;
   X=radius*cos(Theta)+x;
   Y=radius*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', color);

% The gif image was creating with the command 
% convert -antialias -loop 10000  -delay 15 -compress LZW Frame10* Movie.gif

Opisi

Dodajte objašnjenje u jednom redu što predstavlja ova datoteka
One-dimensional wave equation

Predmeti pokazani na ovoj datoteci

prikazuje

Ovo svojstvo ima vrijednost, ali nije poznato

24. augusta 2007

Historija datoteke

Kliknite na datum/vrijeme da biste vidjeli tadašnju verziju datoteke.

Datum/vrijemeMinijaturaDimenzijeKorisnikKomentar
aktualna24. augusta 2007. u 02:27Minijatura verzije (24. augusta 2007. u 02:27)274 × 121 (129 KB)wikimediacommons>Oleg Alexandrov{{Information |Description=Illustration of en:Wave equation |Source=self-made, with en:Matlab |Date=~~~~~ |Author= Oleg Alexandrov }} {{PD-self}} Category:Waves Category:Partial differential equations [[Catego

Sljedeća stranica koristi ovu datoteku: