Biot-Savartov zakon

Izvor: testwiki
Prijeđi na navigaciju Prijeđi na pretragu

Šablon:Elektromagnetizam Bio—Savarov zakon ili Laplaceov zakon je fizički zakon sa primenom u elektromagnetizmu. Zakon opisuje magnetsko polje koje se uspostavlja oko konstantne gustine struje. U skorije vreme, zahvaljujući jednostavnoj analogiji između magnetostatike i dinamike fluida, zakon je našao primenu u proračunavanju brzine vazduha u aerodinamičkim sistemima. Zakon je dobio ime po Žan-Baptist Biotu i Feliks Savartu koji su otrkili ovu relaciju 1820, godine.

Bio—Savarov zakon je temelj magnetostatike isto kao što je i Kulonov zakon u elektrostatici. Bio—Savarov zakon proizilazi iz Lorencovih transformacija električnog polja tačkastog naelektrisanja, koje rezultuju magnetskim poljem, i u potpunoj je saglasnosti sa Amperovim zakonom, isto kao što je i Kulonov zakon saglasan sa Gausovim zakonom.

Ako definišemo diferencijalni element struje

Id𝐥

onda je odgovarajući diferencijalni element magnetskog polja

d𝐁=μ04πId𝐥×𝐫^r2

gde je

I struja, merena u amperima
d𝐥 diferencijal vektora dužine kroz koji teče struja
𝐫^ jedinični vektor od elementa struje do tačke polja
r rastojanje od elementa struje do tačke polja

Jednačine

Struje duž zatvorene konture

Bio—Savarov zakon se koristi za proračunavanje rezultantne jačine magnetnog polja B na poziciji r koje nastaje usled delovanja struje I (npr. u žici). Protok naelektrisanja se smatra konstantnim, ne akumulira se niti smanjuje u toku vremena. Zakon je fizički prikaz integrala duž linije koji se razmatra duž putanje C kojom prolazi struja. Jednačina je data u SI jedinicama.

𝐁=μ04πCId𝐥×𝐫|𝐫|3

gde je r vektor od elementa na delu žice do tačke gde se računa magnetno polje i 𝐫^ je ejdinični vektor od r. Koristeći jedinični vektor 𝐫^, jednačina može da se zapiše u obliku:

𝐁=μ04πCId𝐥×𝐫^|𝐫|2

gde je dl vektor čiji je intenzitet jednak dužini infinitezimalnog elementa žice, u smeru struje kroz žicu, i μ0 je magnetna permeabilnost. Podebljani simboli označavaju intenzitet vektora.

Integracija se uglavnom vrši po zatvorenoj konturi, pošto električna struja može da putuje samo kroz zatvorene konture. Beskonačno duga žica (koja se koristi u SI definiciji električne struje - Amper) je kontra primer. Da bi se upotrebila ova jednačina, tačka u prostoru gde se računa jačina magnetnog polja je izabrana slučajnim izborom. Zadržavajući položaj te tačke fiksnim, linijski integral duž putanje električne struje se računa kako bi se izračunalo ukupno magnetno polje u toj tački. Primena ovog zakona se implicitno oslanja na princip superpozicije za magnetna polja, tj. na činjenicu da je magnetno polje vektorski zbir polja koja su nastala usled prolaska struje kroz infinitezimalno male delove žice. Princip superpozicije važi za električna i magnetna polja zato što su ona rešenja za skup linearno diferencijalnih jednačina, kao što su Maksvelove jednačine, gde je struja jedan od osnovnih termina.

Električne struje kroz provodne zapremine

Formulacija data iznad funkcioniše dobro kada struja može da se aproksimira kao struja koja prolazi kroz beskonačno tanku žicu. Ako struja prolazi kroz provodnik koji ima neku debljinu, odgovarajuća formulacija Bio—Savarovog zakona (u SI jedinicama) bi glasila:

𝐁=μ04πV (𝐉dV)×𝐫r3

ili ekvivalentno

𝐁=μ04πV (𝐉dV)×𝐫^r2

gde je dV infihitezimalno mali element zapremine i J je vektor gustina struje u toj zapremini.

U ovom slučaju, integracija se vrši nad zapreminom provodnika.

Bio—Savarov zakon je osnovni zakon magnetostatike, koji ima sličnu ulogu kao Kulonov zakon u elektrostatici. Kada magnetostatika ne može da se primeni na rešavanje problema, Bio—Savarov zakon treba zameniti Jefimenkovim jednačinama.

Konstantna i uniformna struja

U specijalnom slučaju konstantne struje I, magnetno polje B jednako je

𝐁=μ04πICd𝐥×𝐫^r2

tj. struja može da izađe iz integrala.

Tačkasto naelektrisanje konstantne brzine

U slučaju tačkastog naelektrisanja q koje se kreće konstantnom brzinom v, Maksvelove jednačine daju sledeće izraze za električno i magnetno polje.

𝐄=q4πϵ01v2/c2(1v2sin2θ/c2)3/2𝐫^r2
𝐁=𝐯×1c2𝐄

gde je vektor koji je usmeren od trenutne pozicije čestice do tačke gde se meri magnetno polje, i θ je ugao između v i r

Kada je v2c2, električno i magnetno polje se mogu aproksimirati kao

𝐄=q4πϵ0 𝐫^r2
𝐁=μ0q𝐯4π×𝐫^r2

Ove jednačine se zovu „Bio—Savarov zakon za tačkasto naelektrisanje“, jer su analogne standarnoj formi Bio—Savarovog zakona koja je ranije prikazana. Ove jednačine su prvi put dobijene 1888. godine od strane Olivera Hevasajda.

Primene zakona na magnetne odzive

Bio—Savarov zakon može da se koristi za kalkulaciju magnetnih odziva čak i na atomskom ili molekularnom nivou, pod uslovom da je moguće izračunati gustinu struje iz kvantno mehaničkih jednačina ili teorije.

Primena u aerodinamici

Slika prikazuje brzinu (dV) indukovanu u tački P od strane elementa (dL) jačine Γ.

Bio—Savarov zakon se takođe koristi u teoriji aerodinamike, za izračunavanje brzina koje potiču od vrtloženja.

U aerodinamičkoj primeni, uloga brzine vrtloga(vorteksa) i struje je obrnuta u odnosu na primene u magnetici.

U Maksvelovom radu iz 1861. godine 'O fizičkim linijama sile', magnetno polje jačine H je direktno izjednačeno sa brzinom vorteksa (spinom), gde je B jačina vrtloženja. Maksvel je razmatrao magnetnu permeabilnost μ kao meru gustine vrtloženja. Odatle odnos,

  1. Magnetski indukovana struja
    𝐁=μ𝐇
    je u osnovi rotirajuća analogija odnosu linearnih električnih struja,
  2. Električna struja konvekcije
    𝐉=ρ𝐯
    gde je ρ gustina naelektrisanja. B je posmatrano kao vrsta magnetskih struja vrtloga koji su poravnati po svojoj aksijalnoj ravni, a H je bila obimna brzina vrtloga.

Jednačina električnih struja može biti posmatrana kao konvektivna struja naelektrisanja koja uključuje linearno kretanje. Po analogiji, magnetna jednačina je induktivna struja koja uključuje spin. Ne postoji linearno kretanje u induktivnoj struji duž B vektora. Magnetno indukovana struja predstavlja linije sile. Tačnije, predstavlja linije zakona inverznog kvadrata sile.

U aerodinamici, indukovane struje vazduha formiraju kaleme oko ose vrtloga koje imaju ulogu električnih struja u magnetizmu. Ovo stavlja vazdušne struje u istu ulogu kao i magnetni vektor indukcije B u elektromagnetizmu.

U elektromagnetizmu, B linije formiraju prstene u obliku kalema oko električnih struja, dok u aerodinamici, vazdušne struje formiraju prstene u obliku kalema oko ose vrtloga.

Zato u elektromagnetizmu, vrtlog igra ulogu efekta, dok u aerodinamici, vrtlog ima ulogu uzroka. Ipak kada pogledamo linije B same za sebe, vidimo tačan aerodinamički scenario, tako da B predstavlja osu vrtloga i H predstavlja obimnu brzinu kao i u Maksvelovom radu iz 1861. godine.

U dve dimenzije, za vrtlog beskonačno velike dužine, indukovana brzina u tački je data sa

v=Γ2πr

gde je Γ snaga vrtloga i r je razdaljina pod pravim uglom između tačke i linije vrtloga.

Ovo je granični slučaj formule za segmente vrtloga ograničene dužine:

v=Γ4πr[cosAcosB]

gde su A i B uglovi između linije i dva kraja segmenta.

Bio—Savarov zakon, Amperov zakon i Gausov zakon elektromagnetizma

Magnetno polje B koje se dobija iz Bio—Savarovog zakona će uvek zadovoljiti Amperov i Gausov zakon magnetizma.

Literatura

Šablon:Refbegin

Šablon:Refend

Povezano

Šablon:Normativna kontrola